Approximation Algorithms for Prize-Collecting Network Design Problems with General Connectivity Requirements

نویسندگان

  • Chandrashekhar Nagarajan
  • Yogeshwer Sharma
  • David P. Williamson
چکیده

In this paper, we introduce the study of prize-collecting network design problems having general connectivity requirements. Prior work considered only 0-1 or very limited connectivity requirements. We introduce general connectivity requirements in the prize-collecting generalized Steiner tree framework of Hajiaghayi and Jain [9], and consider penalty functions linear in the violation of the connectivity requirements. Using Jain’s iterated rounding algorithm [11] as a black box, and ideas from Goemans [7] and Levi, Lodi, Sviridenko [14], we give a 2.54factor approximation algorithm for the problem. We also generalize the 0-1 requirements of PCF problem introduced by Sharma, Swamy, and Williamson [15] to include general connectivity requirements. Here we assume that the monotone submodular penalty function of Sharma et al. is generalized to a multiset function that can be decomposed into functions in the same form as that of Sharma et al. Using ideas from Goemans and Berstimas [6], we give an (α logK)-approximation algorithm for the resulting problem, where K is the maximum connectivity requirement, and α = 2.54.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prize-Collecting Survivable Network Design in Node-Weighted Graphs

We consider node-weighted network design problems, in particular the survivable network design problem (SNDP) and its prize-collecting version (PC-SNDP). The input consists of a node-weighted undirected graphG = (V,E) and integral connectivity requirements r(st) for each pair of nodes st. The goal is to find a minimum node-weighted subgraph H of G such that, for each pair st, H contains r(st) e...

متن کامل

A Primal-Dual Clustering Technique with Applications in Network Design

Network design problems deal with settings where the goal is to design a network (i.e., find a subgraph of a given graph) that satisfies certain connectivity requirements. Each requirement is in the form of connecting (or, more generally, providing large connectivity between) a pair of vertices of the graph. The goal is to find a network of minimum length, and in some cases requirements can be ...

متن کامل

Prize-Collecting Steiner Networks via Iterative Rounding

In this paper we design an iterative rounding approach for the classic prize-collecting Steiner forest problem and more generally the prize-collecting survivable Steiner network design problem. We show as an structural result that in each iteration of our algorithm there is an LP variable in a basic feasible solution which is at least one-third-integral resulting a 3-approximation algorithm for...

متن کامل

Approximating node-connectivity and prize-collecting network-design problems with degree constraints

Motivated by applications to designing peer-to-peer overlays for distributing live streaming media content, we study a variety of network design problems with degree constraints on the nodes. We first consider the problem of finding a 2-node-connected spanning subgraph with degree constraints. Node-connectivity problems with degree constraints present new challenges as compared to their edge co...

متن کامل

A 4-Approximation Algorithm for k-Prize Collecting Steiner Tree Problems

This paper studies a 4-approximation algorithm for k-prize collecting Steiner tree problems. This problem generalizes both k-minimum spanning tree problems and prize collecting Steiner tree problems. Our proposed algorithm employs two 2-approximation algorithms for k-minimum spanning tree problems and prize collecting Steiner tree problems. Also our algorithm framework can be applied to a speci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008